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SUMMARY

The steady flow of an Oldroyd-B fluid between two porous concentric circular cylinders is studied. The equation
of motion and the constitutive equations form a system of non-linear ODEs that is solved numerically, and in a
few cases the numerical results are compared with a known analytical solution. We consider the effect of the
non-Newtonian nature of the fluid on the drag and on the boundary layer structure near the walls. Numerical
computations show the effect of the non-Newtonian quantities on the velocity and on the shear stress as the
dimensionless parameters are varied.

KEY WORDS: Oldroyd–B; non-Newtonian; boundary layer; collocation; spline

1. INTRODUCTION

Laminar flow of a linearly viscous fluid between two coaxial rotating cylinders of infinite length takes
place along circular streamlines (cylindrical Couette flow) if a non-dimensional number associated
with the rotation speed of the cylinders does not exceed a critical value, known as the Taylor
number,1–3 and an analytical solution is available in all texts on fluid mechanics (see, e.g. References
4 and 5).

The inadequacy of the Navier–Stokes theory in describing rheologically complex fluids used in
industrial processing, such as polymer solutions, melts and paints, has led to the formulation of other
mathematical models able to predict the flow of such materials. One of them is the Oldroyd-B fluid
model.6,7 This fluid, which takes into account elastic and memory effects exhibited by most
polymeric and biological liquids, has been used quite widely in many applications and the results of
simulations fit experimental data in a wide range.8

Furthermore, it is known that even for the Navier–Stokes fluid, if the cylinder surfaces are porous,
a uniform suction applied on it can sensibly change the boundary layer structure, reduce the drag and
hinder viscous diffusion of vorticity.5,9,10The flows of many other fluid models have been studied in
this geometry, but we shall not discuss them here.11–l5

Here we shall consider the flow of an Oldroyd-B fluid between two concentric circular cylinders
subject to suction or injection at the inner porous wall. As a particular case we also consider the case
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of a porous cylinder rotating in a fluid of infinite extent subject to suction at the wall. In the case of
the Navier–Stokes fluid, this problem was first studied by Hamel,16 and later analyzed by Preston17

and Thwaites.18

Our interest is in understanding the interaction between the viscous and elastic mechanisms and the
effect of suction or injection at the boundary. Results are presented for many cases and compared
with those that are available in the literature. Only in a few cases is it possible to solve the equations
analytically; in all other cases the use of a numerical method is unavoidable.

The non-linear ODEs which couple the velocity with the stress are cast with appropriate boundary
conditions and solved by a collocation method using spline approximation functions. We recover the
classical Hamel result, for the Navier–Stokes fluid, by letting the outer radius tend to infinity.

2. FORMULATION OF THE PROBLEM

The stress tensor in an Oldroyd-B fluid is given by

T � ÿpI � S; S � l1�
_S ÿ LS ÿ SLT

� � m�A1 � l2�
_A1 ÿ LA1 ÿ A1LT

��; �1�

whereÿpI is the spherical part of the stress due to the constraint of incompressibility, the dot denotes
a material time derivative,m is the viscosity andl1 andl2 are material time constants referred to
respectively as the relaxation and retardation times. It is assumed thatl15l250.

The tensorsL andA1 are defined as

L � gradv; A1 � L � LT
:

It should be noted that this model includes the classical linearly viscous Navier–Stokes fluid as a
special case forl1� l2� 0, and to the Maxwell fluid whenl2� 0.

If the fluid is assumed to be incompressible, then

div v � 0 �2�

holds.
Let us now consider the motion of an Oldroyd-B fluid between two coaxial, circular, infinite

cylinders rotating steadily around their common axis. We shall denote byR1 andR2 the radii of the
inner and outer cylinders respectively and byO1 andO2 their angular velocities (the subscripts 1 and
2 will indicate quantities on the inner and outer boundaries respectively). Let (r, y, z) be a cylindrical
co-ordinate system with thez-axis coincident with the axis of the cylinders andy> 0 anticlockwise
(seeFigure 1). Let us assumeO1> 0.

We shall seek an axisymmetric two-dimensional solution and thus assume that all variables depend
on r only.

Figure 1. Geometry of problem: cross-section of cylinders
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Let us indicate the stress tensor and the velocity as

S �
Srr Sry

Sry Syy

� �

; v �
u

v

� �

:

The two scalar momentum equations for steady flows without body forces are

r u
du

dr
ÿ

v
2

r

� �

� ÿ

dp

dr
�

dSrr

dr
�

Srr ÿ Syy
r

; �3�

r u
dv
dr
�

uv

r

� �

�

dSry

dr
�

2Sry

r
; �4�

wherer is the mass density andR14 r 4R2.
Also, (1) reduces to

Srr � l1 u
dSrr

dr
ÿ 2

du

dr
Srr

�

� 2m
du

dr
� l2 u

u2u

dr2
ÿ 2

du

dr

� �2
" #( )

;

 

�5�

Sry � l1 u
dSry

dr
ÿ

dv
dr
ÿ

v

r

� �

Srr ÿ
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dr
�

u

r

� �

Sry

� �

� m
dv
dr
ÿ

v

r
� l2 u

d2
v

dr2
ÿ 3

du

dr
� 2

u

r

� �

dv
dr
ÿ
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r

� �� �� �

;

�6�

Syy � l1 u
dSyy
dr

ÿ 2
u

r
Syy ÿ 2

dv
dr
ÿ

v

r

� �

Sry

� �

� 2m
u

r
� l2

u

r

du

dr
ÿ 3

u2

r2
ÿ

dv
dr
ÿ

v

r

� �2
" #( )

: �7�

The two boundary conditions

v�R1� � R1O1; v�R2� � R2O2 �8�

corresponding to the ‘no-slip’ condition are prescribed.
Let us assume that the cylinders have porous walls and a constant velocityu1 is applied to the inner

one, denoting a uniform suction (u1< 0) or injection (u1> 0). Generally,ju1j is small compared with
R1O1.

From the constraint of incompressibility (2), we have

d�ru�

dr
� 0;

i.e.

u �
R1u1

r
: �9�

Remark 1

It follows thatu2�R1u1=R2, i.e. the outer wall is also subject to a radial velocity. A suction at the
inner wall corresponds to an injection at the outer one and vice versa.

In particular, ifu1� 0, thenu2� 0 andu� 0 everywhere.
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3. NON-DIMENSIONAL EQUATIONS

Let us non-dimensionalize the above equations by introducing the change of variables

r !
r

R1
; u !

u

u1
�if u1 6� 0�; v !

v

R1O1
;

Sij !
Sij

r�R1O1�
2 ; p !

p

r�R1O1�
2 �10�

and defining the dimensionless constants

Re �
O1R2

1

n
; a �

u1

R1O1
; b �

R2

R1
; g �

O2

O1
;

c1 � l1O1; c2 � l2O1; k1 �
u1l1

R1
; k2 �

u1l2

R1
;

with n� m=r the kinematic viscosity. After substitution, equations (3)–(7) become

a2u
du
dr
ÿ

v
2

r
� ÿ

dp

dr
�

dSrr

dr
�

Srr ÿ Syy
r

; �11�

a u
dv
dr
�

uv

r

� �

�

dSry

dr
�

2Sry

r
; �12�

Srr � k1 u
dSrr

dr
ÿ 2

du

dr
Srr

� �

�

2a
Re

du

dr
� k2 u

d2u

dr2
ÿ 2

du

dr

� �2
" #( )

; �13�

Sry � k1 u
dSry

dr
ÿ

u

r
�

du

dr

� �

Sry

� �

ÿ c1
dv

dr
ÿ

v

r

� �
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1
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dv
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ÿ 3

du

dr
� 2
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ÿ

v
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� �� �

; �14�

Syy � k1 u
dSyy
dr

ÿ 2
u

r
Syy

� �

ÿ 2c1
dv
dr
ÿ

v

r

� �

Sry �
2a
Re
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dr
ÿ 3
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2c2

Re
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ÿ
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r

� �2

�15�

to be solved for 14 r 4b. Equation (11) is used to get the pressure gradient dp=dr. From (9) and
(10) it follows that foru1 6� 0

u �
1
r
: �16�
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By substituting (16) into (12)–(15), we finally get the four differential equations

a
dv
dr
�

v

r

� �

� r
dSry

dr
� 2Sry; �17�

1 �
2k1

r2

� �

Srr �
k1

r

dSrr

dr
�

ÿ2a
Rer2

; �18�
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ÿ
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ÿ
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r
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; �19�

1 ÿ
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� �

Syy �
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dSyy
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ÿ
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� �

Sry �
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r2
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4k2a

r4
ÿ c2

dv
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ÿ

v

r

� �2
" #

�20�

with the boundary conditions

v�1� � 1; v�b� � bg: �21�

The boundary conditions for stresses are obtained by evaluating (18)–(20) on the boundary, assuming
that this can be done.

The linear equation (18) is unrelated to the others and admits the family of solutions

Srr � G
exp�ÿr2

=2k1�

r2
ÿ

2a

Re r2
:

Since the solution is continuous ink1, it follows that G� 0 and the solution becomes

Srr �
ÿ2a
Re r2

; �22�

which turns out to be independent ofk1. In fact, Srr is identical for all fluids having the same
viscosity.

By substituing (22) into (19),we get a system of three ODEs (17), (19) and (20) which combines in
a non-linear way the three variablesv, Sry andSyy.

The classical Couette flow (Newtonian fluid without suction) is obtained as a special case.
The next section is devoted to other simpler cases, for which the equations will be reduced and an

exact solution can easily be found. In Section 5 the general case will be analysed.

4. SPECIAL CASES

In this section three special cases of the problem are considered.

Case A. Oldroyd-B fluid without suction or injection

It is easy to prove thatv satisfies the second-order BVP

d2
v

dr2
�

1
r

dv
dr
ÿ

v

r2
� 0 �23�
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with (21). It admits the unique solution19

v�r� �
b

2
gÿ 1

b
2
ÿ 1

r �
b

2
�1 ÿ g�

b
2
ÿ 1

1
r
; �24�

Sry �
2b2

�gÿ 1�

Re�b2
ÿ 1�

1
r2
; Syy �

2�c1 ÿ c2�

Re

4b4
�gÿ 1�2

�b
2
ÿ 1�2r4

5 0 �25�

It is worth noting that the velocity field and shear stress depend only on geometrical and physical
parameters, but not on the relaxation and retardation times, and match those in the Newtonian case.4

This happens also for the plane Couette flow.
Only the normal stressSyy depends on the non-Newtonian fluid, being zero in the Navier–Stokes

case.

Remark 2

It is easy to prove thatv(r)4max(v(1), v(b)).*
The dimensionless torque per unit height exerted on the fluid inside the cylinderr� const. is given

by

T � 2pr2Sry �
4pb2

�gÿ 1�

Re�b2
ÿ 1�

; �26�

which is a constant (+0 iff g + 1) independent ofr.{

Case B. Newtonian fluid with suction or injection

After straightforward computations it follows thatv satisfies the BVP

d2
v

dr2
�

1 ÿ q

r

dv
dr
ÿ

1 � q

r2
v � 0 �27�

with boundary conditions (21), where

q � aRe �
R1u1

v

:

It easy to verify that it admits the unique solution:19

v�r� �
b

2
gÿ 1

b
q�2

ÿ 1
rq�1

�

b
2
�b

q
ÿ g�

b
q�2

ÿ 1

1
r

for q 6� ÿ2; �28�

v*�r� �
b

2
gÿ 1

log b
log r

r
�

1
r

for q � ÿ2 �29�

*In particular we have

for g5
1
b

v�r�4 v�b�;

v�r�5 v�1� if g > �b
2
� 1�=2b2 ;

�

for g4
1
b

v�r�5 v�b�; if g < 1=b2

v�r�4 v�1�
:

�

Moreover, we can directly prove thatv(r)50 if g50.
{Formula (26) is often used experimentally for the determination of the kinematic viscosity.8
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and that

lim
q!ÿ2

v�r� � v*�r� and v�r�5 0 if g5 0 for every q:

The dimensionless shear stress is

Sry �

1
Re

b
2
gÿ 1

b
q�2

ÿ 1
qrq

ÿ 2
b

2
�b

q
ÿ g�

b
q�2

ÿ 1

1
r2

 !

for q 6� ÿ2;

1
Re

b
2
gÿ 1

logb
1 ÿ 2logr

r2
ÿ

2
r2

 !

for q � ÿ2;

8

>
>
>
>
>
<

>
>
>
>
>
:

�30�

Syy �
2a

Re r2
:

In the case of one porous cylinder immersed in an infinite fluid, this solution matches that obtained by
Hamel16 (see also Case C).

Unlike Case A, the torqueT� 2pr2Sry is not uniform on the whole domain. However, with a
suitable choice of the parameters (b, g, q) it can vanish at some points. Since (30) is linear ing, it
follows that at the two extrema

Sryjr�1 � 0 for g �

q � 2bq�2

b
2
�q � 2�

; q 6� ÿ2;

1 � 2 log b

b
2 ; q � ÿ2;

8

>
>
>
<

>
>
>
:

Sryjr�b � 0 for g �

b
q
�q � 2�

b
q�2q � 2

; q 6� ÿ2;

1

b
2
�1 ÿ 2 log b�

; q � ÿ2:

8

>
>
>
<

>
>
>
:

More generally, by varying the angular velocity of the outer cylinder, we can tuneSrr on the inner
or the outer cylinder to some specified value. Unlike Case A, here the solutionv depends on the fluid
viscosity through the parameterq; consequently, it follows that a reduction ofju1j has the same effect
as an increase inv (see also Section 6). This means that the boundary layer structure for a fluid of a
given viscosity can be controlled by imposing a local suction.

The normal stressesSrr andSyy are opposite and independent of the velocity field. The suction (or
injection) velocity produces a normal stress differenceSrr7Syy< 0, as experiments confirm.

Note that, if u1� 0 ()a� q� 0), (27), (28) and (30) reduce to (23)–(25) respectively and
Srr �Syy� 0.

In order to better understand the effect of suction and injection atr� 1, let us study the dependence
on q of the function

G�q� �
dv
dr

�

�

�

�

r�1

�

b
2
gÿ 1

b
q�2

ÿ 1
�q � 2� ÿ 1; q 6� ÿ2;

b
2
gÿ 1

log b
ÿ 1; q � ÿ2:

8

>
>
>
>
<

>
>
>
>
:
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We have that

(i) G(q) + ÿ1 iff b2
g710 0

(ii) G�q� ÿ!
q�0

ÿ1

(iii) G�q�=q ÿ!
q�ÿ2

1 ÿ b
2
g

meaning thatjG�q�j increases in an almost linear manner with the slopej1 ÿ b
2
gj.

An increase in theq-values, ranging from negative to positive, causes a lesser slope forjvj and
therefore a thickening of the boundary layer (see Figure 2). However, there exists a critical value of
q> 0 beyond which there is no noticeable reduction ofG. It follows that the effectiveness of a radial
velocity is greater whenu1< 0 (suction). The only exception is wheng� 1=b2: in this case we have
G(q)�ÿ1 and neither suction nor injection affects the solution.

Case C. One cylinder rotating in an infinite fluid

In another case an analytical solution of the system (17)–(21) can be found. This happens if

(i) g� 1=b2 and particularly when
(ii) b!?, g� 0, v(b)� bg� 0.
The latter case concerns the important flow given by a porous cylinder rotating in an infinite fluid.

In both cases one easily verify that the unique solution forv andSry is:

v�r� �
1
r
; Sry �

ÿ2
Re r2

andSyy is the solution of the ODE

1 ÿ
2k1

r2

� �

Syy �
k1

r

dSyy
dr

�

2

Re

a

r2
� 4

c1 ÿ c2 ÿ k2a

r4

� �

:

Therefore it turns out thatv andSry depend neither on the normal velocity nor on the fluid nature and
match the classical solution in References 4 and 16. This solution can also be recovered in Cases A
and B.

Figure 2. Plots ofG(q) for (a) b�2, g�0 and (b)b�2, g� 2
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5. NUMERICAL METHOD

In the general case the three coupled ODEs (17), (19) and (20), rewritten as

a
dv
dr
�

v

r

� �

� r
dSry

dr
� 2Sry; �31�

Sry �
k1

r

dSry

dr
�

1
Re

k2

r

d2
v

dr2
� 1 �

k2 ÿ 2k1

r2

� �

dv
dr
ÿ

v

r

� �� �

; �32�

1 ÿ
2k1

r2

� �

Syy �
k1

r

dSyy
dr

ÿ 2c1
dv
dr
ÿ

v

r

� �

Sry �
2

Re

a

r2
ÿ

4k2a

r4
ÿ c2

dv
dr
ÿ

v

r

� �2
" #

; �33�

are solved together in (0,b) by a collocation method with spline approximation functions. The basis
functions have been chosen as B-splines, which are known to have good properties of regularity and
well conditioning. In linear cases the related algebraic systems have a banded structure and can be
solved efficiently.20

Let us give a short description of the numerical method. We fix a set of breakpoints
D � �ri�i�1;...;l�1 such that0 � r1 < r2 < � � � < rl < rl�1 � b. Let h; p5 1 be two integers, the first
one being arbitrary and the second one denoting the highest-order derivative (p� 2 in our case), and
n� hl� p.

Let T� (ti)i �1, . . . ,n�h�p be a non-decreasing sequence of points containingr1 andrl�1 h� p times
and all other breakpointsh times. The set of B-splines (Bi)i � 1, . . . ,n built on the sequenceT is a basis
for the spaceSh�p,D�Ph�p,D\Cp71(0, b), wherePh�p;D is the space of piecewise polynomials onD
of orderh� p andCp71(0, b) is the space of differentiable functions on (0,b) of orderp71.

We seek approximation functions

v̂�r� �
P
n

i�1
aiBi�r�; ^Sj�r� �

P
n

i�1
b

j
iBi�r�; ^S � �

^Sj�j�1;2 �

^Sry

^Syy

 !

such that

t�s; v̂; v̂0; v̂00; ^S; ^S0� � 0;

wheret is the quasi-linear operator indicating the system of discretized ODEs (31)–(33), with
boundary conditions (21), ands stands for one of the parametersa, Re, k1, k2, c1, c2 to be changed
one at a time.

Let us now choose a sequence ofh collocation points (ri)i � 1, . . . ,h as the zeros of thehth-degree
Legendre polynomial between two successive breakpoints. The coefficients (ai) and (bj

i) are then
computed as a solution of the non-linear algebraic system

t�s; v̂; v̂0; v̂00; ^S; ^S0��ri� � 0 for every i: �34�

Since the collocation points are equidistributed in each interval, the global error is minimal and its
order is O�jxjh�p), where jxj is the maximum distance between successive breakpoints. At the
breakpoints the order of convergence may be even better, the error beingO�jxj2h

�.21

Much care has to be given to the choice of the breakpoints: indeed, their location and their number
are strictly dependent on the function to be approximated. In general they are more condensed near
the walls, where the functions are supposed to change more rapidly (see Reference 20 for details). On
the other hand, a proper selection of the order of the splines allows one to approximate quite stiff
functions.
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Since (34) is a non-linear system, we solved it with a Newton-like technique, taking a null solution,
or the analytical solution given in Sections 4 and 5 for some values ofs, as an initial guess. Then a
locally parametrized continuation method is applied along one parameters at a time, where an
already computed solution was used as an initial guess for closely followings.22

6. RESULTS

First of all we tested our algorithm on the special cases described in Section 4. Excellent agreement
with the analytical solutions is obtained. Then we allowed one parameters to change at a time in (34)
to investigate the flow response and its sensitivity to variations in the physical, geometrical and
rheological features.

We fixed the order of the splines equal to six forv andS over eight equidistributed breakpoints.
Then, in changing the parameters, we automatically redistributed the knots according to the shape of
the previously computed solution. Their number should possibly increase until the solution settles
down.

We noticed a strong correlation among the many parameters upon which the flow depends, in that
some effects visible for some values are not evident any longer for others. The solution itself exists
only for some combinations of parameters and within the limit of laminar flows. However, it seems
that the solution varies continuously along all parameters.

In all experiments the normal stressSyy can reach an order of magnitude larger than the shear stress
and is the most sensitive to variations in the parameters. We always have thatSrr7Syy< 0.

Among a variety of numerical experiments we report here only the most significant: we always
fixed R1� 1, R2� 2, O1� 1 andg50.

A brief description of the efforts due to changes of each parameter is given below.

Changes in u1

For u1< 0 a strong departure of the solution is obtained from that for the caseu1� 0.
The velocity profile becomes steeper and steeper at the inner wall asu1 grows. The fluid particles

are pushed towards the inner wall andv can overshoot values at the boundaries (Figure 3(a)). This
never happens in the case without suction or injection (see Remark 2, in Section 4).

A similar effect is evidenced foru1> 0. The fluid particles are driven to the outer wall, but it turns
out that there is no solution ifu1 exceeds some critical value (Figure 3(b)).

The shear stress (and also the torque and drag) at both walls is reduced with increasing (seeTable
I).

Changes in v

As already seen in Section 5, a decrease in the kinematic viscosityv causes the same effect as an
increase in the modulus of the suction (or injection) velocity, i.e. a steepening of the velocity slope
and a reduction of the shear stress at both walls (Figure 4).

Changes inl1 andl2

In Section 4 we saw that without a radial velocity applied to the boundary the solution obtained is
identical for all values ofl1 andl2. Even a small suction or injection velocity is insufficient to modify
considerably the velocity field, but it activates a noticeable change in shear and normal stresses with
l1 and l2. The shear stress decreases with increasingl1 and with decreasingl2 over the whole
domain, asTable I shows. This behaviour is qualitatively similar in both cases of suction and
injection.

346 G. PONTRELLI AND R. K. BHATNAGAR



Changes inO2

The changing of the right boundary condition produces a variation in the whole flow and, as a
consequence, in the shear stress all over. The latter becomes larger for largerO2, as expected. The
same phenomenon is shown in the suction and injection cases (Figure 5).

7. CONCLUSIONS

We studied the steady flow between two concentric rotating cylinders. Their walls are porous and a
suction or injection velocity is applied at one of them. The fluid considered is the Oldroyd-B model.
Apart from some special cases where an analytical solution is available, in the general case a
numerical technique is used, which has revealed to be promising for such flow problems. The results
presented show how the solution varies along the many flow and fluid parameters and exhibits a
strong dependence on the radial velocity.

Figure 3. Velocity profiles forl1� 0�4, l2�0, v�0�1, O2�2 in case of (a) suction and (b) injection

Table I. Shear stress at two walls for different values of
parameters (O2�2)

l1 l2 n u1 Sryjr�1 Sryjr�b

0 0 0�5 70�3 1�990 70�028
0�1 0 0�5 70�3 1�946 70�039
0�4 0 0�5 70�3 1�831 70�067
0�8 0 0�5 70�3 1�707 70�098
0�8 0�2 0�5 70�3 1�779 70�080
0�8 0�4 0�5 70�3 1�850 70�063
0�8 0�6 0�5 70�3 1�920 70�045
0�4 0 1 70�3 3�138 0�260
0�4 0 1 0�3 1�914 1�003
0�4 0 0�1 70�3 1�033 70�267
0�4 0 0�1 70�1 0�480 70�055
0�4 0 0�1 0 0�267 0�067
0�4 0 0�1 0�1 0�084 0�196
0�4 0 0�1 0�3 70�164 0�484
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